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Abstract

Image caption evaluation is a crucial task, which in-

volves the semantic perception and matching of image and

text. Good evaluation metrics aim to be fair, comprehen-

sive, and consistent with human judge intentions. When hu-

mans evaluate a caption, they usually consider multiple as-

pects, such as whether it is related to the target image with-

out distortion, how much image gist it conveys, as well as

how fluent and beautiful the language and wording is. The

above three different evaluation orientations can be sum-

marized as fidelity, adequacy, and fluency. The former two

rely on the image content, while fluency is purely related to

linguistics and more subjective. Inspired by human judges,

we propose a learning-based metric named FAIEr to ensure

evaluating the fidelity and adequacy of the captions. Since

image captioning involves two different modalities, we em-

ploy the scene graph as a bridge between them to represent

both images and captions. FAIEr mainly regards the visual

scene graph as the criterion to measure the fidelity. Then for

evaluating the adequacy of the candidate caption, it high-

lights the image gist on the visual scene graph under the

guidance of the reference captions. Comprehensive exper-

imental results show that FAIEr has high consistency with

human judgment as well as high stability, low reference de-

pendency, and the capability of reference-free evaluation.

1. Introduction

Good evaluations lead to continuous progress in many

computer vision tasks. Different from other visual tasks,

the evaluation of the image captioning [25, 39, 4, 40, 33,

38, 8, 7] is very difficult because the outputs of the image

captioning are in the form of natural language and need to

mirror the content of the given image, which involves multi-

modals. Since image captioning can be regarded as trans-

lating the visual information into natural language, early

image captioning methods follow the evaluation mode of

the machine translation [30, 31, 12], which ignore the vi-

sual modal information. That is, the candidate caption is

scored only based on the similarity with the human-labeled

reference captions of the target image. In this formulation,

early popular metrics [26, 9, 22, 32] measure the similar-

ity of two sentences by the n-gram overlap, which results

in low robustness to text ambiguity. To address this de-

ficiency, SPICE [3] breaks the shackles of sentence struc-

ture by using the scene graph representations, which can

measure the semantic similarity of sentences. However, “A

picture paints a thousand words.” Limited numbers of ref-

erence captions are hard to cover all contents in an image.

Therefore, the reference-based metrics usually lead to bi-

ased evaluations. With recent breakthroughs, some studies

[15, 6, 14] introduce the image information into the cap-

tion evaluation, which measures the similarity between the

candidate caption and both the target image and reference

captions simultaneously.

Developing automatic metrics aims to replace human

judges, so the goal of a good metric is to reveal the hu-

man’s evaluation intentions. From the human perspective,

as shown in Fig.1(a), it is fundamental that the messages

conveyed by a caption are related to the given image with

no extra or distortion. Then, an adequate caption should

describe the gist of the image concerned by humans [35].

Moreover, idiomatic wording and beautiful sentences will

further get a higher score. We summarize them as three

evaluating orientations: fidelity, adequacy, and fluency,

which we think roughly form a multi-aspect criteria for im-

age caption evaluation, to some extent similar to the ma-

chine translation evaluation systems [37, 27, 36]. With

no consideration of image information, previous reference-

based metrics cannot assess fidelity adequately, leading to

biased evaluations. For example, if the candidate caption

contains information not included in references but in the

image, the reference-based metrics will fail to give a cor-

rect evaluation. It is also hard for those metrics based on n-

gram overlap to ensure the evaluation of adequacy. Recent
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Figure 1. (a) An example image with human-labeled reference captions (from MS COCO [23]) and two candidates, showing

the criterion of fidelity and adequacy. (b) The designing principle of FAIEr.

learning-based metrics [15, 6, 14] take fidelity into account

by involving image information, yet fail to disassemble the

complex human evaluation intentions. Beyond fidelity and

adequacy, fluency is deemed to measure the quality of lan-

guage expression more subjectively, which concerns little

the image content and is purely related to linguistics.

In this paper, we focus on the first two objective orienta-

tions and propose a Fidelity and Adequacy ensured Image

Caption Evaluation metric named FAIEr. For fair evalua-

tion, it gives the correct captions deserved scores, and ones

containing more image gist will get more awards. FAIEr

takes the image, reference captions, and candidate caption

as input. The evaluation of fidelity mainly depends on the

matching between the image and the candidate caption. To

reward the adequacy, we need to compare the candidate and

the reference captions (as the references convey the humans

captured gist of the image). Therefore, the problem can

be formulated as a multi-instance image-text matching task.

To address such complex cross-modal matching task, FAIEr

uses scene graphs as the intermediation to dissect and align

the visual and textual information and then calculates the

multi-modal similarity by scene graphs fusing and match-

ing. As shown in Fig.1(b), FAIEr firstly represents the input

image and captions as scene graphs. Taking the visual scene

graph as the foundation, FAIEr further highlights the crucial

contents that draw much human attention by fusing the ref-

erence and visual scene graphs into a union scene graph.

The highlighted nodes will have larger weights in the eval-

uation process, which incorporates human evaluation inten-

tion intuitively. Finally, FAIEr scores the candidate cap-

tion by calculating the similarity between the candidate and

union scene graphs.

Comprehensive experiments on Composite Dataset [1],

Flickr8k [13], and PASCAL-50S [32] show the high con-

sistency of FAIEr with human judgement, and verify the ad-

vantages of scene graph representations. In practical appli-

cation scenarios, it is quite common that no human-labeled

reference caption is available. Benefitting from the flexible

scene graphs fusion module, FAIEr has the reference-free

evaluation capability, which can readily address this issue.

2. Related work

According to whether involving the image information,

popular evaluation metrics for image captioning can be di-

vided into image-agnostic and image-based ones. In terms

of the matching strategy, they can also be categorized into

rule-based metrics, learning-based metrics, and a combina-

tion of them.

Image-agnostic metrics. Most of them calculate the

similarity of the reference and candidate caption by word

or n-gram overlap in a rule-based manner. BLEU [26] is a

machine translation metric calculating the n-gram precision

scores with a brevity penalty for short sentences. ROUGE-

L [22] measures the similarity of a pair of sentences by the

weighted harmonic average of the precision and recall of the

longest common subsequence. METEOR [9] replaces the

exact n-gram matching by WordNet-based synonym match-

ing, and computes the similarity scores based on n-gram

precision and recall. CIDEr [32] introduces the tf-idf weight

to reduce the matching weight of the n-grams that are com-

mon in all image captions. In order to evaluate the simi-

larity of two sentences from their semantic, SPICE [3] pro-

poses to use semantic scene graphs to represent sentences,

which breaks the constraint of the grammatical structure. To

enhance the consistency with human judgment and robust-

ness to textual ambiguity, recent studies propose learning-

based metrics. [29] combines four different rule-based met-

rics through a learning-based framework and demonstrates

that composite metrics can further impove caption evalua-

tion. BERTScore [43] utilizes the BERT [10] to obtain the

contextualized embeddings of text tokens for measuring the

similarity of two sentences.

Image-based metrics. Recent studies [15, 6, 14] have

found that only a limited number of reference captions are

hard to cover all content in the given image, so they intro-

duce the source image into the metrics as an additional “vi-

sual reference”. [6] designs a neural network that learns

to recognize whether the candidate caption is generated by

humans. Though it augments pathological cases as nega-

tive examples to improve the model robustness, a simple
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binary classification is not competent enough to supervise

the model for learning the complex and subjective task.

TIGEr [15] and REO apply the image-text matching model

SCAN [21] to compute the caption-image and candidate-

image grounding vectors, and then score candidate captions

based on similarity of vectors. REO [14] additionally cal-

culates mutual orthogonal projections between these vec-

tors to assess the candidate quality from three perspectives

- relevance, extraness, and omission. While these recent ad-

vances have made clear progress, their evaluation strategies

either operate with a mixed measure score, or divide orien-

tations while lacking adequate decomposition of evaluation

progress. Our FAIEr tries to mimic humans’ assessment and

consider the multi-granularity semantic similarities from fi-

delity and adequacy. VIFIDEL [24] also proposes fidelity

as a key point of image caption evaluation. It firstly takes

the labels of objects detected in the image as visual rep-

resentation, then gives them different weights according to

reference captions, and finally calculates the WMD distance

[20] between the weighted object labels and candidate cap-

tion. However, only using discrete textual object labels, VI-

FIDEL ignores other semantic image information such as

relationships, attributes, and positions, so it is not able to

reflect the target image completely. We utilize the struc-

tured scene graphs to represent images more comprehen-

sively and encode all kinds of image features by learning

process. What’s more, scene graphs can represent both vi-

sual and textual semantic components, serving as a bridge

between the two modalities to ease subsequent evaluation.

3. Method

An overall framework of our FAIEr metric is illustrated

in Fig.2, which mainly consists of visual and textual em-

bedding modules, attention fusion module, and matching

module. Taking the image, Nf reference captions, and one

candidate caption as input, FAIEr represents each of them as

an instance of scene graph [34], and embeds the object-level

and relationship-level representations respectively for each

instance. Next, it fuses the visual and reference information

at both object- and relationship-level by the attention fusion

module to obtain the union reference representations. In the

matching module, it computes the matching scores, So and

Sr, between the candidate and union representations at two

levels. Finally, the sum of the So and Sr serves as the eval-

uation score of the candidate caption w.r.t. the given image

and references.

3.1. Scene graph embedding

Given an input image I , a pre-trained object detector is

used to extract No object regions O = {oi|i = 1, 2, ..., No}
in it. The initial visual feature of oi is ui ∈ Rdu , and the

bounding box for oi is bi. The set of Nf reference captions

is F = {Fj |1 ≤ j ≤ Nf}, and the candidate caption is

C. With such inputs, FAIEr firstly builds scene graphs and

embeds the object- and relationship-level representations.

Visual scene graph embedding. A visual ob-

ject encoder encodes the i-th object region as voi =
W2tanh(W1ui), where voi is the object-level representa-

tions, and W1 ∈ Rd×du and W2 ∈ Rd×d are trainable pa-

rameters. The visual scene graph is initialized as a complete

graph, where each node represents an object.Then, a Graph

Convolutional Network (GCN) acts as the visual graph en-

coder to embed the relationship-level representations be-

tween nodes. vri is the relationship-level representation of

oi, which is computed as the attention weighted aggregate

message from all its neighbor nodes. We use the offset be-

tween the bounding boxes of two objects, ∆bij = bi − bj ,

as the weight of the attention so that each node can selec-

tively receive information from the connected nodes. The

update process is computed as:

γij =
exp(tanh(W∆∆bij))∑

k∈Ni
exp(tanh(W∆∆bik))

, vri =
∑

j∈Ni

γijWrvo
j ,

(1)

where γij represents the message passing weight from node

oj to oi. Ni denotes the neighbourhood of oi, which also

contains itself to retain its original characteristics. W∆ ∈
R1×4 and Wr ∈ Rd×d are trainable parameters.

Apart from the offset between the bounding boxes of two

objects, we also tried other more complicated ways to cal-

culate the weight of GCN attention, such as the fusion of

region features, bounding boxes and textual label embed-

dings of each object pair, but they did not bring significant

improvement.

Textual scene graph embedding. Suppose there are Lo
fj

and Lo
c words in Fj and C, respectively. In case that no ref-

erence caption is available, we use “.” as an empty reference

sentence. For the textual object-level representations, each

word wk (k is the index of the word) is encoded by the em-

bedding layer as ewk
first. Then the textual word encoder,

a bidirectional-GRU, will embed the words along with each

sentence. We take the hidden state ho
wk

of the word wk as

its object-level representation. The object-level represen-

tations of the reference caption Fj and the candidate cap-

tion C are represented by ho
j = {ho

jk|1 ≤ k ≤ Lo
fj
} and

ho
c = {ho

ck|1 ≤ k ≤ Lo
c}.

Next, FAIEr employs SPICE as the textual graph parser

to parse each caption into a textual scene graph, in which

the nodes are object words (e.g. “kids”, “grass”) and the

edges are relationship phrases (e.g. “stand in”). After that,

the textual relationship-level representations are encoded by

the textual graph encoder. It takes the semantic triplets from

the textual scene graph as input, such as “〈kids-stand in-

grass〉”, and then uses a bidirectional-GRU to encode each

triplet. Finally, we take the last hidden state feature of each

triplet as the relationship-level representations, hr. Sup-

pose there are Lr
fj

and Lr
c triplets in the reference Fj and

14052



Visual 

Object

Encoder

Visual 

Graph 

Encoder

visual object-level representations

Textual  

Word 

Encoder

visual relationship-level representations

Textual  

Graph

Parser

Textual  

Graph

Encoder

Visual 

Graph 

Builder

grass water tree

dress

umbrellaumbrella

boy girl

reference object-level 

representations

grass
water

tree
dress

umbrella
umbrella

boy
girl

S
𝑜𝑜

S
𝑟𝑟

Reference

CaptionReference

CaptionReference

Caption

Candidate

Caption

girl
in

umbrella

with

boy
and

grass

onon

dress

kids

grass water
by

kids

umbrella grass

with on

kids

tree umbrella

with

girl dress

umbrella

boy

umbrella

grass water tree

Match Module
Attention Fusion

Module

Textual  

Word 

Encoder

Textual  

Graph

Parser

Textual  

Graph

Encoder

object fusion

object fusion relationship fusion

reference scene graphs

candidate object-level 

representations

candidate scene graph

relationship fusion

visual

scene graph

union

objects

union

relationships

Figure 2. The framework of the image caption evaluation metric FAIEr (best viewed in a digital version).
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the candidate C. Then the relationship-level representa-

tions of the reference Fj and candidate C are represented

as hr
j = {hr

jk|1 ≤ k ≤ Lr
fj
} and hr

c = {hr
ck|1 ≤ k ≤ Lr

c},

respectively.

3.2. Scene graph fusing

To obtain adequate reference information that reflects

humans’ major perception of the image, we fuse the visual

and reference scene graphs via the attention mechanism.

The framework of the attention fusion layer is illustrated in

Fig.3. Given a visual object or relationship vector v
χ
i (χ can

be o or r), it first attends to the textual object or relationship

vectors respectively in every reference as:

αi,j,k = softmax(Wa(v
χ
i ⊙h

χ
jk)), a

χ
ij =

∑L
χ

fj

k=1
(αi,j,kh

χ
jk),

(2)

where αi,j,k is the attention weight of the k-th textual ob-

ject or relationship node in Fj , a
χ
ij is the attended infor-

mation for v
χ
i w.r.t Fj , Wa ∈ R1×d are trainable param-

eters. For all attended textual information a
χ
i = {a

χ
ij}

of v
χ
i , a fusion GRU (shown in Fig.3) fuses them into fu-

sion textual information as m
χ
i = GRUχ

m(aχi ). At last,

a FC layer merges the visual and fusion textual informa-

tion into the union information as z
χ
i = Wu([v

χ
i ;m

χ
i ]),

where Wu ∈ Rd×2d are trainable parameters. The union

object- and relationship-level represetations are zo = {zoi }
and zr = {zri }(i ∈ [1, No]), which highlights the content

attended by humans.

3.3. Scene graph matching

The matching module aims to score the candidate cap-

tion by matching the candidate scene graph with the union

scene graph. Inspired by [17], we define the similarity be-

tween two cross-modal vectors zoi and ho
ck as their dot prod-

uct zoi
T ho

ck. Then the matching scores between two scene

graphs at the object-level and similarly at the relationship-

level are computed as follows:

So =

∑Lo
c

k=1 maxi∈[1, No](z
o
i
T ho

ck)

Lo
c

,

Sr =

∑Lr
c

k=1 maxi∈[1, No](z
r
i
T hr

ck)

Lr
c

,

(3)

which means for every candidate object or relationship, the

most similar union object or relationship is picked up, and

then the scores are averaged by the number of the objects

or relationships. Finally, the score of the candidate caption

w.r.t. the union reference information is S = So + Sr.

3.4. Loss function

We use the triplet loss Eq.(4) to train our FAIEr metric,

which lets the candidate get higher score given its target im-

age (along with its reference captions). In one mini-batch,

the score of the k-th candidate with its target image Ik is set

to Skk. The k-th candidate given the l-th image (k 6= l) and

the l-th candidate given the k-th image are unmatched pairs,

whose scores are Skl and Slk respectively.

L =
∑

k

(
∑

l

max(0,m− Skk + Skl)

+
∑

l

max(0,m− Skk + Slk)).
(4)

After adding the hardest negative mining [11], our loss

function is defined as

L+ =
∑

k

(max(0,m− Skk + Skp̂)

+ max(0,m− Skk + Sq̂k)),

(5)
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where p̂ = argmaxt 6=k Skt and q̂ = argmaxt 6=k Stk are

hard negatives, and m is a margin parameter.

4. Experiments

4.1. Datasets and metrics

Human correlation and accuracy are commonly used to

evaluate the image caption evaluation metrics. To calcu-

late the caption-level correlation between the metrics and

human judgments, each candidate caption in this kind of

datasets is annotated with scores by human beings, such as

Composite Dataset [1] and Flickr8k [13]. Following prior

studies, we use Pearson’s ρ, Kendall’s τ , and Spearman’s

ρ correlations to calculate pairwise scores between human-

beings and automatic metrics. The other kind of datasets,

e.g. PASCAL-50S [32], ask annotators to choose the better

one from candidate caption pairs, so we calculate the accu-

racy of metrics. Moreover, as a learning-based metric, we

also conduct experiments on a cross-domain dataset Nocaps

[2] to validate the generalization ability.

Composite Dataset. It has 3, 995 images from the

testing splits of three different datasets, MS COCO [23],

Flickr30k [41], and Flickr8k [13]. Each image has three

candidate captions, of which one is written by human and

the other two are machine captions generated by image cap-

tioning models [16, 1]. All candidate captions were scored

by annotators on a graded correctness scale from 1 (not re-

lated to the image) to 5 (perfectly related to the image).

Flickr8k contains 8, 092 images, each of which has 5

human written captions. 5, 822 captions from the testing

splits are scored by annotators from 1 (unrelated to the im-

age) to 4 (describes the image correctly). To keep consis-

tency with comparative work [3], we similarly excluded the

158 candidate captions that are scored according to their

ground-truth image.

PASCAL-50S collects 1, 000 images from UIUC PAS-

CAL Sentence Dataset [28], and 50 human written ref-

erence captions for each image. This dataset also con-

tains 4, 000 candidate caption pairs with human judgments,

which form 4 groups with 1,000 pairs in each group. 1) HC

group includes correct human written pairs for the target

images. 2) HI contains correct and incorrect human written

caption pairs. 3) HM pairs include a human written caption

and a machine-generated caption for the same image. 4)

MM is machine-generated sentence pairs for each image.

Nocaps is a dataset for novel object captioning. It col-

lects 166,100 captions generated by human for 15,100 im-

ages of validation and test set of Open Images Dataset V4

[19], which contains about 400 object classes associated lit-

tle with training captions in MS COCO. A subset of its vali-

dation set, containing 1,000 images and 10 captions for each

image, is used in our experiment.

4.2. Implementation details and experiment settings

Implementation details. We follow [16] to split 5, 000
images for validation and 5, 000 images for test from MS

COCO [23], and trained all our models on the remaining

113, 287 images that not overlap with other datasets. We

use the scene graph generator NeuralMotifs [42] to propose

the bounding boxes for top 36 objects in each image, and

then use the object detector in [4] to extract initial visual

features ui ∈ Rdu (du = 2048) for each region. SPICE

[3] is utilized as our textual scene graph parser to extract

relation triplets from captions. Our method is implemented

with the Pytorch platform1. The dimension of our embed-

ding space d = 512. The margin m is set to 0.2. We use

Adam [18] optimizer with a mini-batch size of 100 for train-

ing. The initial learning rate is 0.0005.

Due to the 512-dimension embedding space and two

evaluation branches of object-level and relationship-level,

the theoretical range of our metric is [-1024, 1024]. How-

ever, we find that scores are distributed over a much smaller

range in practice. Through massive experiments on differ-

ent datasets, we find that more than 99% of scores are in the

range of -2 and 6, which can be seen as the experimental

bound. In addition, the score distribution is also related to

the margin in the loss function. The distribution range of

results expands with the increasing of the chosen margin.

Experiment settings. Here we will clarify all our vari-

ant models. FAIEr is our full model. FAIEr\rel only has

object-level cross-modal fusing and matching. FIEr evalu-

ates candidates by only matching the candidate caption with

the image information. AIEr denotes only reference cap-

tions are involved in evaluating the candidate caption. X-n

ref means the model X uses n reference captions during

training, e.g. FAIEr-1 ref. X-r ref randomly picks 0 to 4

reference captions for each training sample, so it can work

with no reference during test. We use MS COCO evalua-

tion tool2 to implement the rule-based metrics BLEU, ME-

TEOR, ROUGE-L, CIDEr, and SPICE. The learning-based

metrics TIGEr [15] and LearnToEval [6] are implemented

by their public codes. Note that we train LearnToEval on

MS COCO and test on Composite and Flickr8k, which is

different from their original usage. “*LearnToEval” in Ta-

ble 1 and “*VIFIDEL” in Table 3 are original results copied

from their paper [6] and [24]. Since the reference captions

are randomly selected in the test, we test each model 5 times

and take the average result.

4.3. Quantitative experiments

We conduct comprehensive quantitative experiments to

compare our metric with the rule-based metrics [26, 22,

9, 32, 3] and the state-of-the-art learning-based metrics

[15, 6, 24] that use image. Compared with the rule-

1Our source codes are available at http://vipl.ict.ac.cn/resources/codes.
2https://github.com/tylin/coco-caption
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Table 1. Comparisons of state-of-the-art metrics on Com-

posite Dataset and Flickr8k.

Method
Composite Dataset Flickr8k

P-ρ S-ρ K-τ P-ρ S-ρ K-τ

BLEU-1 0.392 0.386 0.287 0.324 0.294 0.218

BLEU-4 0.272 0.365 0.271 0.068 0.279 0.206

METEOR 0.376 0.449 0.338 0.493 0.464 0.350

ROUGE-L 0.397 0.392 0.296 0.365 0.319 0.239

CIDEr 0.321 0.429 0.324 0.422 0.415 0.314

SPICE 0.408 0.432 0.347 0.568 0.559 0.478

*LearnToEval [6] - - - - - 0.466

LearnToEval [6] 0.318 0.368 0.273 0.415 0.475 0.355

TIGEr [15] 0.522 0.540 0.409 0.655 0.665 0.517

FAIEr-1 ref 0.646 0.661 0.514 0.702 0.713 0.563

FAIEr-4 ref 0.605 0.630 0.487 0.696 0.708 0.557

FAIEr-r ref 0.643 0.660 0.513 0.709 0.718 0.568

FAIEr-r ref (ref-free) 0.595 0.607 0.467 0.674 0.694 0.544

Table 2. Accuracy of different metrics and the average

scores of human written and machine-generated captions in

HM-MSCOCO. Testing with four reference captions.

Method Accuracy(%)
Average Score

human machine

BLEU-1 46.2 0.629 0.646

BLEU-4 44.2 0.195 0.241

METEOR 54.3 0.241 0.229

ROUGE-L 45.2 0.466 0.489

CIDEr 51.0 0.877 0.858

SPICE 55.8 0.210 0.179

TIGEr 62.7 0.732 0.706

FAIEr-4 ref 76.8 3.458 2.931

based metrics, FAIEr achieves higher consistency and sta-

bility and lower reference dependency, which benefits from

the introduction of the image. Comparisons with other

learning-based metrics validate that our evaluation strategy

is more consistent with human intentions.

High human correlation. Table 1 displays the correla-

tion between human judgement and different metrics. Ex-

cept for FAIEr-r ref (ref-free) that uses no reference cap-

tion during testing, others use one reference. Compared

with other metrics, our models achieve significantly higher

correlation with human judgment, indicating that FAIEr

can more accurately capture human evaluation intentions.

More importantly, the promising performance of FAIEr-

r ref (ref-free) shows that our metric is able to tackle the

practical scenarios where no human-labeled reference cap-

tion is available. In addition, we conduct experiments under

VIFIDEL’s experimental settings on the Composite, calcu-

lating human correlation from two aspects: relevance and

thoroughness, of which results also reflect our advantage.

More details can be seen in supplementary materials.

High consistency. To further show the high consis-

tency of our metric, we collect a new dataset named HM-

MSCOCO (details in the supplementary material), which

contains 15, 000 candidate caption pairs, each with a hu-

man written caption and a machine-generated one. Table 2

shows the results of different metrics. The accuracy is de-

fined as the percentage of pairs whose human caption gets

Figure 4. Testing metrics using different number of refer-

ence captions on Composite and Flickr8k.

a higher score than the machine-generated one. BLEU-1,

BLEU-4, and ROUGE-L suggest that less than 50% of hu-

man captions are superior to machine ones. Their average

scores of human captions are also smaller than machine cap-

tions. TIGEr expects 62.7% of human captions are better.

FAIEr thinks human is better than machine in 76.8% pairs

and gives the human a 18% (3.458 vs. 2.931) higher scores

than machines. The possible reason here is if for the same

image, the candidate with high-fidelity has different atten-

tions from the reference captions, the rule-based metrics fail

to give a fair score. Our FAIEr addresses this issue by con-

sidering both the image information and human evaluation

intentions in the evaluation strategy.

Low reference dependency. We explore how the num-

ber of reference captions affects the metrics performance by

testing from 0 to 5 references. Both candidate and reference

captions are randomly chosen from human references. As

shown in Fig.4, the Spearman correlation increases with the

number of references growing, where the growth rate grad-

ually slows down because the union of plenty of references

tends to be a stable set. Our models generally outperform

other metrics in almost all cases, especially with fewer ref-

erences. Besides, the results also show the high stability

and low reference dependency of our models, owing to the

help of images. When testing with more reference captions,

the rule-based metrics have large increase and even outper-

form TIGEr on Composite, because when randomly pick-

ing more references, the reference that is same as the candi-

date is more likely to be selected, which will favor the rule-

based metrics. Comparing different invariants of FAIEr, we

find FAIEr-1 ref performs better with fewer references, and

then is surpassed by FAIEr-4 ref when testing with more

references, because training the model using a fixed number

of references will rigidify its evaluation strategy. FAIEr-r

ref performs stably, even testing with zero reference. Over-

all, their performances have slight difference.

High stability. Table 3 displays the accuracy (%) and

standard deviation of metrics on PASCAL-50S. The results

indicate that the HC pairs are most difficult to judge while

the HI pairs are easiest. We achieve the best performance on

both of them. In the other two groups, HM and MM, FAIEr
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Table 3. Comparisons of the accuracy of metrics on

PASCAL-50S. Testing with five references.

Method HC HI HM MM

BLEU-1 50.9 ± 0.70 94.8 ± .72 91.8 ± .70 57.7 ± 1.50

BLEU-4 53.0 ± 0.90 92.3 ± .32 86.3 ± .82 60.6 ± 1.20

METEOR 58.1 ± 1.30 97.3 ± .31 93.8 ± .55 63.0 ± 1.10

ROUGE-L 53.4 ± 1.70 95.3 ± .81 92.6 ± .45 58.3 ± 0.61

CIDEr 54.6 ± 1.50 98.1 ± .23 91.3 ± .77 64.0 ± 1.10

SPICE 55.2 ± 1.50 93.7 ± .63 85.8 ± .36 50.0 ± 1.00

TIGEr [15] 55.1 ± 0.42 99.7 ± .05 92.1 ± .31 74.6 ± 0.79

*VIFIDEL [24] 64.0 97.0 75.0 72.0

FAIEr\rel-4 ref 58.4 ± 0.68 99.8 ± .08 92.6 ± .50 73.1 ± 0.70

FAIEr-4 ref 59.7 ± 0.39 99.9 ± .00 92.7 ± .23 73.4 ± 0.42

Table 4. Evaluation of variants of our model on Composite

Dataset and Flickr8k. Testing with one reference caption.

Method Composite Dataset Flickr8k

P-ρ S-ρ K-τ P-ρ S-ρ K-τ

FIEr 0.602 0.612 0.471 0.683 0.697 0.548

AIEr-4 ref 0.202 0.169 0.125 0.037 0.049 0.036

FIEr+AIEr-4 ref 0.206 0.185 0.136 0.006 0.028 0.020

FAIEr\rel-4 ref 0.587 0.611 0.472 0.698 0.705 0.554

FAIEr-4 ref 0.605 0.630 0.487 0.696 0.708 0.557

FAIEr\rel-1 ref 0.643 0.656 0.509 0.693 0.710 0.561

FAIEr-1 ref 0.646 0.661 0.514 0.702 0.713 0.563

FAIEr\rel-r ref 0.645 0.661 0.514 0.694 0.708 0.559

FAIEr-r ref 0.643 0.660 0.513 0.709 0.718 0.568

shows comparable performance with the best metrics. Due

to the introduction of image information, the standard de-

viations of FAIEr and TIGEr are significantly smaller than

other rule-based metrics, which show high stability.

Effectiveness of modules. To verify the effectiveness

of the proposed method, we evaluate many variants of our

models in Table 4. The FIEr model only using image in-

formation for evaluation has high consistency with human

judgment, which can reveal the importance of the image.

Since our framework is designed for cross-modal match-

ing and scoring, missing of image basis probably causes

low and unstable performance of AIEr. FIEr+AIEr-4 ref

merges the scores of FIEr and AIEr by a FC layer. How-

ever, generally merging two modules with different training

difficulty by force has a negative effect, proving the effec-

tiveness of our attention fusion layer that splits reference

captions and fuses them into image. Due to FAIEr\rel

fuses the image and reference for evaluation, it improves

the evaluation ability. Comparing FAIEr to FAIEr\rel in

Table 4 and Table 3, the scene graph representation shows

its advantages, owing to the relationship information.

4.4. Qualitative analysis

Illustrative examples. Fig.5 shows an example image

with three references from MS COCO test split and evalua-

tion scores of 4 candidates by several metrics. The 1st can-

didate is a correct caption with similar words as references,

so all metrics give it the highest score. The 2nd one is more

detailed that mentions some objects not appearing in refer-

Table 5. The average scores for matching the visual regions

with its GT (ground-truth) words and non-GT words respec-

tively in references and candidates.

ref.

number

image-references pair union-candidate pair

GT words non-GT words GT words non-GT words

1 3.10 0.21 5.04 0.86

2 3.10 0.20 5.62 0.79

3 3.09 0.20 5.81 0.75

4 3.09 0.20 5.92 0.73

ences. The 3rd one is also correct but has quite different ex-

pression.The 4th candidate is an incorrect caption just using

similar words as references. The rule-based metrics some-

times cannot correctly evaluate captions with high-fidelity.

BLEU-4, METEOR, and ROUGE-L give higher scores to

the 4th incorrect candidate than the 2nd and 3rd correct

ones, showing their low robustness against textual ambigu-

ity. Without image information, SPICE cannot evaluate the

second one correctly. Besides, the scores of three correct

candidates have large gaps in some metrics, especially on

BLEU-4, ROUGE-L and SPICE. Compared with them, our

FAIEr\rel and FAIEr are much more reasonable. More

cases can be seen in our supplementary materials.

Grounding analysis. To analyze the evaluation process

of our FAIEr in-depth, we utilize MSCOCO Entities [5]

dataset (details in the supplementary materials) to match

the visual object regions and fused object nodes with the

reference and candidate words, respectively, and calculate

the average scores of the GT (ground-truth) and non-GT

words. As shown in Table 5, the GT words are scored much

higher than non-GT words, which verify the effectiveness

of our metric. As the number of references increases, the

score of candidate GT words increases, while the score of

candidate non-GT words decreases. It reveals our attention

fusion module can give larger weight to important content.

These results also reflect FAIEr can ensure to evaluate fi-

delity and adequacy. Fig.6 illustrates four major objects

in an image and their heatmaps with regard to three ref-

erences and four candidates. The three red heatmaps are

matching between visual objects and three references. The

visual objects can find their corresponding words in refer-

ences, such as the obj1 vs. “children”. After fusing the

visual information and the references, we show the simi-

larity scores between fusion objects and candidates in blue

heatmaps, which is normalized in each caption. From these

heatmaps, we find that the critical words in correct candi-

dates can achieve high scores. Since the incorrect candidate

contains no corresponding content with image and the ref-

erences, it receives a low score. More detailed analysis and

cases are shown in our supplementary materials.

4.5. Generalization on cross­domain datasets

Generalization ability is essential for learning-based

evaluation metrics [6, 15]. Trained on a specific dataset,

14056



Image References Candidates
w/o image with image

BLEU-4 METEOR ROUGE-L SPICE FAIEr/rel FAIEr

• two children are standing in a 
grassy field. 

• there are two children standing in 

the grass by water.

• two small children with umbrellas 
in a field near the shore.

Two children with umbrellas in a grassy field. 0.84 0.389 0.797 0.636 4.282 4.670

A girl with blue dress and a boy standing in 
front of trees.

3.91e-9 0.175 0.199 0.0 3.416 3.133

A couple of kids on top of a lush green field. 7.08e-13 0.188 0.217 0.167 3.853 3.464

Two dogs are standing in an oil field. 4.93e-5 0.258 0.625 0.1 1.894 1.580

Figure 5. Evaluation examples of different metrics.

obj1 obj2 obj4obj3

Candidate 1 (correct) Candidate 2 (correct)

Candidate 3 (correct) Candidate 4 (incorrect)

References

Figure 6. Visualizing the object-level evaluation of FAIEr\rel.

a good metric needs to be effective on other cross-domain

datasets. In fact, with our model trained on MS COCO, all

experiments above are conducted on other datasets without

re-training or finetuning, but we additionally validate and

compare its extensiveness on a dataset more different from

MS COCO. Therefore, we test learning-based metrics on

a subset of validation set of Nocaps Dataset, which con-

tains about 400 object classes hardly seen during training.

Since there are no human judgments for captions in Nocaps,

we design and conduct cross-modal retrieval experiments.

Image-text retrieval requires models to learn both image and

text information and the correspondence between them pre-

cisely, which are also the key points of an image caption

evaluation metric. More specifically, given an image or a

caption as query, we score it on all provided captions or im-

ages and sort the results in descending order. An effective

retrieval model should be able to identify the groundtruth

answers among all the candidates and give them higher

scores. As displayed in Table 6, owing to our comprehen-

sive scene graph representations and delicate attention fu-

sion mechanism, our model is better at understanding both

modalities and shows higher extensiveness. More detailed

examples can be seen in supplementary materials.

Table 6. Image-text retrieval results on Nocaps Dataset.

Testing with four reference captions. R@k is the percentage

of queries whose ground-truth is ranked within top K.

Method image to text text to image

R@1 R@5 R@10 R@1 R@5 R@10

TIGEr [15] 0.638 0.870 0.924 0.225 0.665 0.819

FAIEr-4 ref 0.965 0.998 1.000 0.825 0.953 0.975

5. Conclusion

In this paper, we tried to decompose the complex and

subjective human’s evaluation intentions as: fidelity, ade-

quacy, and fluency for image captioning. To address the

evaluation of fidelity and adequacy, we propose a learning-

based metric FAIEr. Given the image, reference captions,

and candidate caption as input, FAIEr uses the scene graphs

to characterize the human semantic perception of visual and

textual information. It measures the fidelity of the candidate

mainly depending on the visual scene graph and fuses the

reference information into the visual scene graph for fur-

ther examining the adequacy. Comprehensive experiments

show FAIEr can more accurately reveal the human evalu-

ation intentions and ensure the assessment of fidelity and

adequacy. Besides, FAIEr also shows high stability, low

reference dependency, and the ability of reference-free eval-

uation. When applying FAIEr for practical evaluations, we

believe that using larger training datasets with less bias or

finetuning on the target dataset can generally boost its per-

formance. For further comprehensive evaluation, it is in-

dispensable to involve the factor of “fluency” which is ex-

pected to benefit from more advanced NLP techniques. It

is also worth exploring the evaluation mechanism that fuses

the learning-based and rule-based metrics.
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